

LG303

TABLE OF CONTENTS

Section Number	Subject	Page
	DEFINITIONS	
2.0	DETERMINE AIR TEMPERATURE CORRECTION FACTOR	1
3.0	CORRECTED PRESSURE	1
4.0	THEORETICAL O ₂ SATURATION	1
5.0	ACTUAL DISSOLVED O2 CONCENTRATION	2
6.0	CTATICTICC	2

Standard Operating Procedure for the Determination of Dissolved O₂ Correction Factors

1.0 **DEFINITIONS**

 H_2O Temperature (°C) T_{w} Air Temperature (°F) T_a Atmospheric Pressure (mbar) Corrected Pressure (mbar) $P_{c(mbar)}$ Corrected Pressure (mm Hg) $P_{c(mm Hg)}$ Correction Factor (°F) Theoretical O₂ Saturation (mg/L) S_T Adjusted Theoretical Saturation (mg/L) O_T Measured Dissolved Oxygen (mg/L) O_M Actual Dissolved Oxygen (mg/L) O_A

2.0 DETERMINE AIR TEMPERATURE CORRECTION FACTOR

2.1 Use the following equation, which was calculated with data from Standard Methods, to determine the correction factor for the ambient air temperature (or laboratory temperature for the saturated standard):

$$C = -0.0434 T_a + 23.171$$

3.0 CORRECTED PRESSURE

3.1 Subtract the correction factor determined in the previous step, from the observed pressure to determine the corrected pressure given as:

$$P_c(mbar) = P_0 - C$$

3.2 Use this result and convert the units of pressure with the following expression:

$$P_{c} (mm Hg) = 0.750062 P_{c} (mbar)$$

4.0 THEORETICAL O₂ SATURATION

4.0 Determine the theoretical O_2 saturation at T_w and 760 mm Hg with the following equation, which was calculated using temperature data from Standard Methods:

$$S_T = 0.0049 \ T_w = -0.3661 \ T_w + 14.534$$

4.1 Adjust this result using the corrected pressure in mm Hg, P_c (mm Hg):

$$O_{T} = \frac{S_{T} \times P_{C} (mm \ Hg)}{760}$$

5.0 ACTUAL DISSOLVED O₂ CONCENTRATION

5.1 Determine the actual dissolved O_2 concentration:

$$O_A = \frac{(60 O_M)}{(V_{bottle} - 0.8)}$$

6.0 STATISTICS

6.1 The relative percent deviation is given as:

$$RPD = \frac{\left| O_T - O_A \right|}{\left(\frac{O_T - O_A}{2} \right)} \times 100$$

6.2 While:

% Saturation =
$$\left(\frac{O_A}{O_T}\right) \times 100$$